XIX. reál- és humántudományi Erdélyi Tudományos Diákköri Konferencia (ETDK) Kolozsvár, 2017. május 18–21.

A Brown mozgás törvényszerűségeinek a kísérleti vizsgálata

Szerző: Kelemen Szabolcs Babeş–Bolyai Tudományegyetem, Kolozsvár, Fizika Kar, Mérnöki fizika szak, alapképzés, III. év

Témavezetők: dr.Néda Zoltán egyetemi tanár, Babeş–Bolyai Tudományegyetem, Kolozsvár, Fizika Kar, Magyar Fizika Intézet **drd. Varga Levente** egyetemi tanársegéd, Babeş–Bolyai Tudományegyetem, Kolozsvár, Matematika és Informatika Kar, Magyar Matematika és Informatika Intézet

Tartalomjegyzék

Tartalomjegyzék	2				
Bevezető	3				
A Brown mozgás története	3				
A kísérleti berendezés és a kísérletek menete	4				
Az adatok feldolgozása	7				
A Brown mozgásra érvényes skálatörvény megindoklása10					
Kísérleti eredmények	.13				
I. Skálatörvények a Brown mozgásra a kísérletek alapján	.13				
II. A skálatörvényben szereplő arányossági konstans függése a részecskék méretétől	.14				
III. Korreláció a részecskék véletlenszerű mozgásában	.16				
Következtetés	.20				
Hivatkozások	.21				

Bevezető

Kutatásunk célja a hőmozgásra érvényes skálatörvények és egyéb általános tőrvényszerűségek vizsgálata. Vizsgálni fogjuk a hőmozgás által gerjesztett Brown mozgást végző részecskék mozgásai közti korrelációkat is, amely tudomásunk szerint egy eddig nem tanulmányozott jelenség. Ilyen szempontból a már klasszikusnak vehető eredmények reprodukálása mellet, kutatásainknak egyéni eredményei is vannak.

A Brown mozgás története

A hőmozgást végző részecskék véletlenszerű, kaotikusnak tűnő mozgására igaz, hogy az elmozdulás nagysága arányos a mozgás idejének gyökével:

$$d = C\sqrt{t},\tag{1}$$

ahol a C arányossági tényezőt a részecskék mérete határozza meg.

A Brown mozgás jelenségét az angol botanikus, Robert Brown fedezte fel 1827-ben. Brown a kísérletei során vízben szuszpendált virágporszemcséket vizsgált mikroszkóp segítségével. Munkásságának a fizika szempontjából lévő fontossága az, hogy kísérleteivel először sikerült közvetett bizonyítékot szolgáltatnia a hőmozgás jelenlétére. [1]

1. ábra. Robert Brown.(http://imgc.allpostersimages.com/images/P-473-488-90/38/3804/JXVIF00Z/posters/portrait-of-scottish-botanist-robert-brown.jpg)

Marian Smoluchowski és Albert Einstein a 20. század elején egymástól függetlenül dolgoztak ki elméletet a Brown mozgás leírására. [2]. Einstein az 1905-ben kiadott első cikkében valószínűség számítási eszközökkel, a kinetikus gáz- és folyadékelméletet felhasználva írja le a jelenséget. A

cikkben szereplő magyarázat szerint a mozgás a fluidom molekuláinak hőmozgásával kapcsolatos. A mikróméter nagyságú részecskék kaotikus mozgását a fluidum molekulákkal való folyamatos ütközés eredményezi. Egy víz molekula másodpercenként átlagosan 10¹¹ ütközést szenved. Tehát még ha a leggyorsabb videókamerával is követjük a rendszer fejlődését, két egymás utáni képkocka között minden részecske több millió ütközést szenved. Ezek alapján az egymás utáni képkockák közti elmozdulásait a részecskéknek, tekinthetjük egymástól független eseményeknek.

Az említett elmélet alapján az (1) összefüggésben szereplő *C* arányossági konstans függ a részecskék méretétől. Kétdimenzióban az elmozdulás négyzetének az átlagértékére igaz az Einstein-Smoluchowski összefüggés:

$$\langle r^2 \rangle = \frac{4kT}{6\pi\eta a}t = 4Dt,\tag{2}$$

ahol k a Boltzmann-állandó, T a fluidum hőmérséklete, η a fluidum viszkozitási állandója, a a Brown mozgást végző részecske sugara. A (2) összefüggésben szereplő

$$D = \frac{kT}{6\pi\eta a}$$

állandó az öndiffúziós állandó.

Összehasonlítva az (1) és a (2) összefüggéseket következik, hogy:

$$d = \sqrt{\langle r^2 \rangle} \tag{3}$$

$$C = \sqrt{\frac{4kT}{6\pi\eta a}} \tag{4}$$

A (3), (4) összefüggések alapján belátható, hogy az elmozdulás fordítottan arányos a részecskék sugarának négyzetgyökével.

A (2) összefüggés helyességét Jean Perrin igazolta kísérletileg1908-ban és elsőként talált módot az Avogadro szám kísérleti úton történő meghatározására. Ezért a munkájáért 1926-ban fizikai Nobeldíjat kapott [3].

A kísérleti berendezés és a kísérletek menete

A Brown mozgás tanulmányozására szolgáló kísérletek során két különböző esetben vizsgáltuk a mikróméter nagyságú részecskék mozgását, viszont csak az egyik esetben kaptunk elegendő adatot ahhoz, hogy a jelenséget statisztikailag elemezni tudjuk. Az első esetben vízben oldott, sötét színű vízfesték részecskéit figyeltük meg a mikroszkópon keresztül. Második esetben füstkamrába fecskendezett füst részecskéinek mozgását figyeltük meg.

A kísérlethez szükséges kellékek (lásd 2. ábra):

- CCD-kamerával felszerelt fénymikroszkóp (1)
- számítógép (2)
- pipetta (3)
- Berzelius pohár (4)
- tárgylemezek (5)
- füstölő (6)
- zöld lézer (7)
- fecskendő (8)
- füstkamra (9)

2. ábra. A kísérleti berendezés kellékei: (1) CCD-kamerával felszerelt fénymikroszkóp, (2) számítógép, (3) pipetta, (4) Berzelius pohár, (5) tárgylemezek, (6) füstölő, (7) zöld lézer, (8) fecskendő, (9) füstkamra.

Attól függetlenül, hogy milyen mintát akarunk vizsgálni, a kísérlet első lépése ugyan az. A mikroszkópot a számítógéphez csatlakoztatjuk. Egy a számítógépre telepített program segítségével a képernyőn megjelenik a mikroszkóp kamerája által készített kép (lásd 3. és 4. ábra).

3. ábra. A CCD-kamerával felszerelt mikroszkóp által a számítógépen megjelenített kép vízfestékes

víz vizsgálata esetén.

4. ábra. A CCD-kamerával felszerelt mikroszkóp által a számítógépen megjelenített kép füstkamrába zárt füst vizsgálata esetén.

Az elvégzett kísérletek a második lépésben különböznek egymástól. A mikroszkóp által rögzített kép számítógépen való előhívása után a vizsgálandó anyag előkészítése következik.

A folyadék fázisú minta esetében egy Berzelius pohárban sötét színű vízfestéket oldunk fel vízben (fluidumban). Az így kapott festett folyadékot pipetta segítségével ráhelyezzük a mikroszkóp

tárgylemezére, majd egy vékony fedőlemezzel lefedjük. Így a két üveglemez között vékony vízréteg alakul ki.

A füstkamrával végzett kísérlethez egy egyszerű illatosító füstölő füstjét használjuk. A dugattyú nélküli fecskendőt a meggyújtott füstölő fölé tartva fogjuk fel a füstöt. Amikor a felfogott füst már elég sűrű, a dugattyú segítségével lezárjuk a fecskendőt. Ezek után a fecskendő tartalmát a füstkamrára szerelt vezetéken keresztül a kamrába fecskendezzük, majd lezárjuk a rendszert. A füsttel telt kamrát a mikroszkóp alá helyezzük. Mivel a füstkamra ablakai a felső és az oldalsó részein vannak, így alulról nem világítható át a mikroszkóp fényforrásával. Ezért ebben az esetben a kamrát az oldalsó ablakán keresztül világítjuk meg egy lézer segítségével. A lézerfény a füstrészecskéken szóródik, tehát minél sűrűbb a kamrába zárt füst, a mikroszkóp n keresztül látott kép annál világosabb.

Miután a mintát behelyeztük a mikroszkóp objektíve alá, a beállítások következnek mindkét esetben. Ilyen beállítás például a fókuszálás, vagy a fényerő szabályozása. A megfelelő beállítások elérését nagyban megkönnyíti, hogy a számítógép képernyőjén látható a mikroszkóp által közvetített kép. Ha a kijelzőn megjelenő kép éles elkezdhetünk videót készíteni. A videó rögzítése szintén része a számítógépre telepített programnak.

Fontos megjegyezni, hogy a vízfesték részecskéket 600-szoros, míg a füstrészecskéket 400-szoros nagyítással figyeltük meg.

Az előzőekben leírt folyamat segítségével különböző mintákat megvizsgálva több videót készítünk a jobb statisztika elérésének érdekében.

A telepített program segítségével beállíthatjuk a készített videó másodpercenkénti képkockáinak számát. Ez a beállítás azért fontos, mert a program, amivel az adatokat feldolgozzuk a videó képkockáiról egyenként szűri ki az információt és a mozgás időbeli fejlődésének pontos meghatározásához szükségünk van a két képkocka felvétele között eltelt időre.

Az adatok feldolgozása

Az adatok elsődleges feldolgozása egy Python programozási nyelvben írt kód segítségével történik. Az általunk használt elemzőprogram funkcióinak részletes leírása megtalálható az Interneten [4].

Az elemzés során használt program beolvassa az általunk készített videó képkockáit, majd sorra mindegyik képkockán megtalálja a folyadékban feloldott festékrészecskéket, vagy a kamrába zárt füst részecskéit (lásd 5. ábra) és mindegyiket egy számmal azonosítja.

5. ábra. A Trackpy Python csomag segítségével detektált festékrészecskék.

Az azonosítás során a program meghatározza a részecskék 2 dimenzióbeli koordinátáját (*x*, *y*), méretét (*size*), fényességét (élességét) (*mass*), excentricitását, azaz az alakját (*ecc*). A számokkal azonosított részecskéket végigköveti megadott számú képkockán keresztül és mindenik képkockán meghatározza külön minden részecskére az felsorolt adatokat. A részecskék mozgásának ismeretében a Python csomag képes az esetleges drift mozgás (folyadékáramlás) észlelésére és kiküszöbölésére. Az elemzés befejeztével a kapott adatok egy szöveges fájlba mentődnek el (lásd 1. táblázat).

	х	У	particle	size	mass	frame	ecc
0	298.373	19.5477	2	2.55051	2451.8	0	0.07104
1	348.789	70.4716	8	2.61849	2155.48	0	0.08024
2	95.6975	104.223	17	2.50192	2218.11	0	0.10654
3	206.432	117.995	18	2.85318	3556.75	0	0.01841
4	390.45	128.255	21	2.73156	3009.89	0	0.04678
5	461.158	138.946	24	2.84279	3006.01	0	0.13798

1. táblázat. A Trackpy csomag segítségével elmentett adatok.

Előfordulhat, hogy egy részecske nem jelenik meg a videó mindenik képkockáján, így vannak olyan részecskék, amelyekről csak néhány adatot rögzítünk. Ez az oka annak, hogy a füsttel végzet kísérletből kevés adatot képes kinyerni a program. A füstkamra függőleges (itt a mikroszkóp fókuszsíkjára merőleges irány) irányú mérete viszonylag nagy, ezért a véletlenszerű mozgást végző

füstrészecskék ugyanúgy mozoghatnak a fókuszsíkra merőleges, mint azzal párhuzamos irányban. Ennek következtében rövid idő alatt kimennek a mikroszkóp fókuszsíkjából, így a mozgásuk csupán néhány képkockán kísérhető végig.

A mentés után az adatokat egy másik program segítségével dolgozzuk fel. Először kiszűrjük azokat a részecskéket, amelyeket használunk az elemzés további részében, vagyis azokat, amelyek kevesebb adatot szolgáltattak, mint a maximális adatszám 10%-a. A szűrés után maradt adatokat egy másik szöveges fájlba mentjük el. Ezeket az adatokat további szempontok szerint szűrjük annak függvényében, hogy mit szeretnénk vizsgálni. Ilyen szempontok a részecskemérettel kapcsolatos mennyiségek (size, mass), vagy az egymástól mért távolság. A méret szerinti szűrésre azért van szükség, hogy nagyjából azonos méretű részecskéket kapjunk, mivel a részecskék mozgékonysága méretfüggő.

Az adatok feldolgozása előtt négy darab körülbelül 7 perces videót készítettünk különböző minták felhasználásával. Az általunk használt beállítások mellett a részecskéket azonosító program átlagosan 100-120 füstrészecskét azonosított, de mivel ezekről egyenként kevés adatunk volt, nem folytattuk az elemzést.

Vizes próba esetén az első program képkockánként átlagosan 80-100 részecskét azonosított, annak függvényében, hogy mennyi festék volt feloldva a vízben. Eredményként 3000 képkockára összesen 8207 különböző részecske került azonosításra. A kapott adatcsomagot a részecskék mérete (size) szerint szűrtük meg, csak azokkal a részecskékkel dolgozunk a továbbiakban, amelyek mérete 20%-nál kisebb eltéréssel az átlagos érték körül van. A 8207 részecskéből a szűrő program segítségével 86 részecskét választottunk ki.

A kapott adatokat felhasználva egy ábrázoló program segítségével kirajzolható külön minden részecske trajektóriája (pályagörbéje)(lásd 6. ábra).

6. ábra. Egy festékrészecske trajektóriája (pályagörbéje) a piros pontból indulva.

A Brown mozgásra érvényes skálatörvény megindoklása

A Brown mozgásra a legegyszerűbb modell a véletlenszerű bolyongás egy homogén rácson. Tekintsünk egy *d* dimenziós rácsot, melynek egyik pontját kinevezzük origónak. Ezen a ponton *d* számú, egymásra merőleges tengely halad át. A rácspontok közötti távolság állandó, ezt a távolságot rácsállandónak nevezzük. Így minden rácspont közvetlen szomszédságában 2*d* darab rácspont van. A véletlenszerű bolyongás abból áll, hogy egy képzeletbeli részecske az egyik rácspontból kiindulva véletlenszerűen léphet rácspontról rácspontra, ugyanolyan valószínűséggel minden irányba.

Az elvégzett kísérlet esetén a Brown mozgást kétdimenziós rácson (d=2) való véletlenszerű bolyongással modellezzük. Arra a kérdésre keresünk választ, hogy milyen távolságra lesz a részecske a kezdőponttól N lépés után.

Tárgyaljuk először a jelenséget egydimenziós mozgás esetén, majd általánosítunk a d=2 esetre. Ha két csomópont közötti távolságot egységnyinek tekintjük, a részecske egy lépésének az értéke lehet +1, vagy -1 azonos valószínűséggel. Jelöljük P(N,k)-val annak a valószínűségét, hogy az origóból kiinduló részecske N darab lépés után a k rácspontba jut. A P(N,k) a következő feltételek mellett nem lehet nulla:

- $k \in \{-N, -N + 1, ..., N 1, N\}$
- ha N páros, k is páros kell legyen, ha N páratlan, k is páratlan.

A P(N,k) valószínűséget az értelmezés alapján számítjuk ki

$$P(N,k) = \frac{W_n^k}{W_N},\tag{5}$$

ahol W_n^k az N lépés alatt megvalósítható trajektóriák száma, amelyek végpontja a k koordinátájú pontban van és W_N az N darab lépéssel megvalósítható összes trajektóriák száma. Belátható hogy d=1 esetben, mivel minden lépésnél két lehetséges választás van:

$$W_N = 2^N. (6)$$

Tételezzük fel, hogy P(N,k) nem nulla és k > 0. A k < 0 eset hasonlóan tárgyalható. Ahhoz, hogy a részecske N lépés után a k koordinátájú pontba jusson $n_{+} = \frac{N+k}{2}$ számú lépést kell tegyen pozitív irányban és $n_{-} = \frac{N-k}{2}$ számú lépést negatív irányban. Ez összesen $C_N^{(n+)}$ féleképpen tehető meg. Ezek alapján:

$$W_n^k = C_N^{(\frac{N+k}{2})} = \frac{N!}{\ln\left[\left(\frac{N+k}{2}\right)!\right]\ln\left[\left(\frac{N-k}{2}\right)!\right]}$$
(7)

A (6) és a (7) összefüggések alapján a keresett valószínűség logaritmusa:

$$\ln[P(N,k)] = \ln(W_n^k) - \ln(W_N) = \ln(N!) - \ln\left[\left(\frac{N+k}{2}\right)!\right] - \ln\left[\left(\frac{N-k}{2}\right)!\right] - N\ln(2)$$
(8)

Abban az esetben ha N >> 1 és $k \ll N$, az (8) összefüggésben a megfelelő helyen alkalmazható a Stirling-képlet:

$$\ln(n!) \approx n \ln(n) - n + \frac{1}{2} \ln(2\pi n)$$

A számítások elvégzése után kapjuk, hogy:

$$\ln[P(N,k)] = \frac{N+k+1}{2} \ln\left[1+\frac{k}{N}\right] - \frac{N-k+1}{2} \ln\left[1-\frac{k}{N}\right] - \frac{1}{2} \ln(\pi) + \frac{1}{2} \ln(N) \frac{1}{2} \ln(2)$$
(9)

A *k* << *N* esetben alkalmazva a Taylor-féle sorbafejtést:

$$\ln\left[1+\frac{k}{N}\right] \approx \frac{k}{N} - \frac{k^2}{2N^2} + \cdots$$
$$\ln\left[1-\frac{k}{N}\right] \approx \frac{k}{N} - \frac{k^2}{2N^2} - \cdots$$

Behelyettesítve ezen értékeket a (9) összefüggésbe, azonnal adódik:

$$\ln[P(N,k)] \approx -\frac{k^2}{N} + \frac{k^2}{2N^2} + \frac{1}{2}\ln(\frac{2}{\pi N})$$

Figyelembe véve, hogy N >> 1, a fenti egyenlet jobb oldalának második tagja elhanyagolható az elsőhöz viszonyítva, amiből következik, hogy:

$$P(N,k) \approx \sqrt{\frac{2}{\pi N}} e^{-\frac{k^2}{2N}}$$
(10)

Azonnal látható, hogy $N \rightarrow \infty$ esetben a fenti valószínűség normált, vagyis

$$\sum_{\{k\}} P(N,k) = 1$$
(11)

Mivel P(N,k) rögzített N mellett csak minden második egész k értékre lesz nullától különböző, az $N \rightarrow \infty$ esetben felírható, hogy:

$$\sum_{\{k\}} P(N,k) \approx \frac{1}{2} \sum_{k=-N}^{N} P(N,k) \approx \frac{1}{2} \int_{-\infty}^{\infty} P(N,x) dx$$

Mivel

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi},$$

a normáltság azonnal ellenőrizhető:

$$\frac{1}{2} \int_{-\infty}^{\infty} P(N, x) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi N}} e^{-\frac{x^2}{2N}} dx = 1$$
(12)

A (10) valószínűségből az N lépés utáni átlagos koordináta megkapható, mint:

$$\langle k \rangle_{N} = \sum_{\{k\}} kP(N,k) = \frac{1}{2} \int_{-\infty}^{\infty} xP(N,x) dx = 0$$

Belátható tehát, hogy a megtett távolság átlagértéke a lépések számától függetlenül 0. Ezért $\langle k \rangle_N$ mennyiség nem jellemzi azt, hogy az *N* lépés után a részecske átlagosan milyen távolságra jut el az origótól. Ennek jellemzésére a

$$< k^{2} >_{N} = \sum_{\{k\}} k^{2} P(N,k) = \frac{1}{2} \int_{-\infty}^{\infty} x^{2} P(N,x) dx = N$$

mennyiséget, vagy ennek négyzetgyökét

$$\sqrt{\langle k^2 \rangle_N} = \sqrt{N} \tag{13}$$

használjuk.

Elmondhatjuk tehát, hogy az egydimenziós bolyongás során a részecske által megtett átlagos távolság arányos a megtett lépések négyzetgyökével. Az általunk végzett kísérlet esetén a lépések száma a videó képkockáinak számával arányos, ami meg az idővel arányos.

Kétdimenziós bolyongás esetén minden rácspontból a négy szomszédos rácspont mindenikébe ugyanakkora valószínűséggel lépünk. Az előző esethez hasonlóan itt az $\langle r^2 \rangle_N$ mennyiség érdekel. Mivel minden irányba egyforma valószínűséggel mozoghat a részecske, az N darab lépést feloszthatjuk $\frac{N}{2}$ darab x és ugyanennyi y irányú lépésre. Felhasználva a d=1 esetben bizonyított összefüggést, az $\langle r^2 \rangle_N$ mennyiség a következő féleképpen alakul:

$$\langle r^2 \rangle_N = \langle x^2 + y^2 \rangle_N = \langle x^2 \rangle_{\frac{N}{2}} + \langle y^2 \rangle_{\frac{N}{2}} = \frac{N}{2} + \frac{N}{2} = N.$$
 (14)

A d=2 esetben kapott skálázás megegyezik a d=1 eset eredményével [5].

Kísérleti eredmények

I. Skálatörvények a Brown mozgásra a kísérletek alapján

Egy általunk írt Mathemathica program segítségével az előzőekben kiszűrt adatokat használva igazoltuk, hogy a Brown mozgásra igaz a fentiekben tárgyalt skálatörvény.

A megírt program átlagolja a részecskék megtett távolságait. Mindegyik részecskére kiszámolja a kezdeti helyzetétől megtett távolságát tíz képkockánként. Az így kapott távolságokat részecskénként átlagoljuk, majd ábrázoljuk a kapott átlagos távolságokat az idő (képkockák sorszámának) a függvényében.

Szemléltetésként a távolságok átlagának logaritmusát ábrázoljuk a megtett lépésszám logaritmusának függvényében. Az eredményként kapott adatokra az (1) egyenletben szereplő függvényt illesztünk, melynek iránytényezője megadja a fennebb említett skálatörvényben az idő hatványkitevőjét.

A mérést 86 részecskére, illetve 1500 lépésre elvégezve az alábbi 7. ábrán szereplő adatokat és a rájuk illesztett egyenest kapjuk.

7. ábra. A mérések során kapott adatok ábrázolása logaritmikus skálán. A piros pontok a mért adatok átlagai, a kék egyenes az adatokra illesztett függvény.

A fent említett adatok alapján logbinelt ábrát is készítettünk (8. ábra). Erre az ábrára illesztett függvény pontosabb értéket ad az idő hatványkitevőjére és a skálatörvényben szereplő *C* állandóra is.

8. ábra. A mérések során kapott adatok alapján készített logbinelt ábra. A piros pontok a mért adatok átlagai, a kék egyenes az adatokra illesztett hatványfüggvény.

A függvény illesztéséből a távolság-idő skálázás hatványkitevője

$$\alpha = 0.502, \tag{15}$$

amely jó közelítéssel megegyezik a várt 0.5-ös értékkel.

Ebben az esetben a skálatörvényben szereplő C állandó értékére pedig a

$$C = e^{-0.2} \approx 0.82 \tag{16}$$

értéket kaptuk.

II. A skálatörvényben szereplő arányossági konstans függése a részecskék méretétől

A kísérlet ezen részében azt szeretnénk igazolni, hogy a részecskék által egy adott idő alatt megtett átlagos távolság fordítottan arányos a sugaruk $\frac{1}{2}$ -dik hatványával.[3] Ehhez szükségünk volt a részecskék méretük szerinti csoportosítására és szűrésére. Ebben az esetben a részecske azonosító program által értelmezett, mérettel kapcsolatos mennyiségek közül a tömeg (fényesség, élesség) szerint szűrtük az adatokat. Azért célszerűbb ezt a mennyiséget venni figyelembe, mert ezen értékek szórása

jóval nagyobb, mint a size szórása. A mass egy részecskesugárral arányos mennyiség, aminek értékei ezres nagyságrendűek, körülbelül 2000-től 5000-ig terjednek. Az erre a célra írt program egymást metsző csomagokba osztja szét a részecskéket, így előfordulhat, hogy egy részecske több adatcsomagban is szerepel.

Ilyen felosztást alkalmazva mindenik csomagba elég sok adat került ahhoz, hogy statisztikailag jó eredményt kapjunk. A besorolás után egy másik program kitörli azoknak a részecskéknek az adatait a csomagokból, amelyek nem tesznek eleget a következő két feltételnek:

$$\frac{\sigma(mass_i)}{n} \le 0,04,\tag{17}$$

$$n \ge 30,\tag{18}$$

ahol $\sigma(mass_i)$ és $\langle mass_i \rangle$ a tömeg szórása, illetve átlagos értéke az *i*. részecske esetén, *n* pedig megadja, hogy az adott részecske hány képkockán jelenik meg.

A skálatörvényben szereplő *C* konstans tanulmányozására a részecskék által megtett távolság időfüggését igazoló programot tovább fejlesztettük. Ezen program segítségével mindenik részecske csomag esetén elkészítettük a fentihez hasonló logbinelt ábrát (8. ábra), annyi változtatással, hogy most a kapott logaritmikus értékekhez feles iránytényezőjű egyeneseket illesztettünk. Így egymással párhuzamos egyeneseket kaptunk, melyek az *OY* tengelyt különböző pontokban metszik. Ezek a metszéspontok az (1) összefüggésben szereplő *C* állandók logaritmusai. Az így kapott értékeket ábrázoltuk a nekik megfelelő csomagban lévő részecskék átlagos fényességének (tömeg) logaritmusa függvényében. Az kapott ábrához egy egyenes illeszthető, aminek az iránytényezője megadja, hogy a skálatörvényben szereplő konstans hogy függ a részecskék méretétől.

Többféle szűrésre is leellenőriztük és mindenik esetben jó közelítéssel azt kaptuk, hogy a részecskék mozgékonysága fordítottan arányos a részecskék méretének négyzetgyökével.

A 9. ábrán bemutatott eredményt 10000 képkocka vizsgálata során nyert adatok elemzéséből kaptuk. Ebben az esetben azok a részecskék kerültek ugyanabba a csomagba, amelyek fényessége kevesebb, mint 600 értékkel tért el egymástól. Az intervallumok, amelyek szerint a felosztás történt 500-as tömegértékkel metszik egymást. Kiszűrtük azokat a részecske csomagokat, ahol kevés adat volt és így a 27 csomagból 14 használható maradt, amiből a 9. ábrán feltüntetett értékeket kaptuk.

9. ábra. A különböző átlagméretű részecskecsomagok esetén kapott C állandó értékek logaritmusai.
 A kék egyenes a kapott adatokra illesztett függvény.

A kapott adatokra illesztett egyenes iránytényezője

$$\alpha = -0.503,\tag{19}$$

ami jó közelítéssel egyezik az Einstein-Smoluchowski összefüggés alapján várt skálázási exponenssel.

III. Korreláció a részecskék véletlenszerű mozgásában

Az álló fluidumban lévő mikróméter méretű részecskék mozgását egy eddig még nem tárgyalt szemszögből vizsgáltuk, tanulmányoztuk a részecskék mozgásainak a korreláltságát.

A korreláció az együttes változás mértéke, aminek erősségét egy korrelációs együtthatók segítségével jellemezhetjük.

Vízfestékrészecskék Brown mozgása esetén a korreláció tanulmányozására a Pearson korrelációs együtthatót [6] használjuk (r). A Pearson korrelációs együttható egy dimenzió nélküli mennyiség, ami két változó lineáris kapcsolatát jellemzi. -1 és 1 közötti értékeket vehet fel. r = -1 és r = +1 esetén teljes negatív, illetve pozitív korrelációról beszélünk. Ha az r értéke 0, nincs lineáris kapcsolat a változók között. A korrelációs együttható nem egész értékei nem teljes negatív (r < 0), illetve pozitív (r > 0) korrelációt jelölnek. Értelemszerűen a nullához közeli érték gyenge, az egyhez közeli pedig

erősebb korrelációra utal.

Két egyenként *n* elemet tartalmazó sorozat (x, y) esetén a Pearson korrelációs együtthatót a következő képen értelmezzük:

$$r = \frac{\langle xy \rangle_n - \langle x \rangle_n \langle y \rangle_n}{\sigma_n(x)\sigma_n(y)},\tag{20}$$

ahol $\langle x \rangle$ és $\langle y \rangle$ az x illetve y sorok elemeinek átlagát, $\sigma(x)$ és $\sigma(y)$ pedig a szórását jelöli. [6]

A (20) összefüggés írható még a következő alakban is:

$$r = \frac{n\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{n\sum_{i=1}^{n} x_i - (\sum_{i=1}^{n} x_i)^2} \sqrt{n\sum_{i=1}^{n} y_i - (\sum_{i=1}^{n} y_i)^2}}.$$
(21)

A Brown mozgás esetén a korreláció tanulmányozását megnehezíti az a tény, hogy a korreláció erősége távolságfüggő és a részecskék egymástól mért távolsága időben nem állandó. Ezt a problémát úgy oldottuk fel, hogy az egymástól mért távolságuk szerint a részecske párokat l hosszúságú binekbe csoportosítottuk. Mindenik pár esetén kiszámoltuk az r értékét és a bineken belül átlagoltuk azt. Az átlagolt r értékeket a nekik megfelelő binekben lévő részecske-részecske távolságok átlagának függvényében ábrázoltuk.

A kísérletből nyert adatok elemzésének ezt a szakaszát két lépésben végeztük el. Egy program segítségével a meglévő szűretlen adatokból a következő képen gyártottunk fájlokat. Lerögzítettünk egy n értéket, ami azt adja meg, hogy hány képkockánként figyeljük meg a rendszer állapotát. Majd *n* lépésenként haladva a képkockákon az összes *k*, *h* részecskepárra meghatároztuk a szükséges adatokat és ezeket táblázat formájában egy új állományban mentettük el (2. táblázat). A táblázat első oszlopában az i. megfigyelt képkocka sorszáma szerepel. A második és harmadik oszlopok az első (*k*), illetve a második (*h*) részecske azonosítóját tartalmazzák. A következő négy oszlop a *k* és *h* részecskék *n* frame alatti *x*, illetve *y* irányú elmozdulásait tartalmazzák (dx_k , dx_h , dy_k , dy_h). A hetedik oszlopban a két részecske *i*. és *i*+*n*. képkockákon való távolságának átlaga szerepel (r_{kh}). Egy képkockán az $r_{kh}(i)$ távolság megadható, mint:

$$r_{kh}(i) = \sqrt{(x_k(i) - x_h(i))^2 + (y_k(i) - y(i))^2}.$$
(22)

Ezt felhasználva kapjuk, hogy:

$$r_{kh} = \frac{r_{kh}(i) + r_{kh}(i+n)}{2},$$
(23)

Míg az utolsó két oszlop a részecskék méreteit (tömegét) tartalmazza (m_k, m_h).

i	k	Η	dx _k	dx _h	dy _k	dy _h	r _{kh}	m _k	m _h
0	18	27	-0.12114	-0.49267	0.000359	0.102325	27.21504	3556.753	2181.827
0	18	29	-0.12114	-0.48476	0.000359	-0.06116	37.22417	3556.753	2199.969
0	27	29	-0.49267	-0.48476	0.102325	-0.06116	20.69108	2181.827	2199.969
0	50	59	0.396542	0.114007	-0.05441	-0.02926	29.04001	2084.204	2877.281
0	62	65	0.707872	0.830279	0.06595	0.723793	37.09615	4389.571	2647.047

2. táblázat. Az adatfeldolgozás során készített táblázat. i - frame number; k - , h - első és második részecske indexe; dx_k -, dx_h -, dy_k -, dy_h - a k és h részecskék n frame alatti x, illetve y irányú elmozdulásai; r_{kh} - a két részecske közti átlagos távolság az i. és az i+n. frameken; m_k -, m_h - a k és h részecskék tömegei.

Ezzel az eljárással tíz különböző állományt készítettünk, amelyek esetén az *n* értékei rendre 1,2,...10 voltak.

Ebben az esetben a változók, amelyeknek tanulmányoznunk kell a kapcsolatát, a részecskék helyzetvektorainak változásai:

$$\overrightarrow{dr_k}(i) = \left(x_k(i+n) - x_k(i)\right)\vec{i} + \left(y_k(i+n) - y_k(i)\right)\vec{j},\tag{24}$$

$$\overrightarrow{dr_h}(i) = \left(x_h(i+n) - x_h(i)\right)\vec{i} + \left(y_h(i+n) - y_h(i)\right)\vec{j}.$$
(25)

Ezen $\overrightarrow{dr_k}(i)$ és $\overrightarrow{dr_h}(i)$ változások korrelációját egy másik, általunk írt program segítségével vizsgáltuk. Mivel a korreláció csak kis távolságokon tapasztalható, az előzőleg legyártott fájlokból kitörültök azokat a sorokat, amelyek esetén az r_{kh} értéke nagyobb volt, mint 40. Az így kapott, jóval kisebb adathalmazzal lényegesen gyorsabban tudtunk dolgozni. A program a (21) összefüggés alapján határozza meg az *r* értékeit. Ebben az esetben ez a következő képen alakul:

$$r = \frac{\langle \overrightarrow{dr_k} \overrightarrow{dr_h} \rangle_n - \langle |\overrightarrow{dr_k}| \rangle_n \langle |\overrightarrow{dr_h}| \rangle_n}{\sigma_n(|\overrightarrow{dr_k}|)\sigma_n(|\overrightarrow{dr_h}|)},\tag{26}$$

ahol n azon képkockák száma, amelyen a k és h részecskék egyszerre megjelennek. Kifejtve a (26) összefüggésben szereplő kifejezéseket, megjelennek a 2. táblázatban elmentett mennyiségek.

$$\langle \overrightarrow{dr_{k}}\overrightarrow{dr_{h}} \rangle_{n} = \frac{1}{n}\sum_{i=1}^{n} \left(dx_{k_{i}}dx_{h_{i}} + dy_{k_{i}}dy_{h_{i}} \right),$$
(27)
$$\langle |\overrightarrow{dr_{k}}| \rangle_{n} \langle |\overrightarrow{dr_{h}}| \rangle_{n} = \frac{1}{n} (\sum_{i=1}^{n} dx_{k_{i}}) \frac{1}{n} (\sum_{i=1}^{n} dx_{h_{i}}) + \frac{1}{n} (\sum_{i=1}^{n} dy_{k_{i}}) \frac{1}{n} (\sum_{i=1}^{n} dy_{h_{i}}),$$
$$\sigma_{n} (|\overrightarrow{dr_{k}}|) = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (dx_{k_{i}})^{2} + \frac{1}{n}\sum_{i=1}^{n} (dy_{k_{i}})^{2} - (\frac{1}{n}\sum_{i=1}^{n} dx_{k_{i}})^{2} - (\frac{1}{n}\sum_{i=1}^{n} dy_{k_{i}})^{2},$$
$$\sigma_{n} (|\overrightarrow{dr_{h}}|) = \sqrt{\frac{1}{n}\sum_{i=1}^{n} (dx_{h})^{2} + \frac{1}{n}\sum_{i=1}^{n} (dy_{h_{i}})^{2} - (\frac{1}{n}\sum_{i=1}^{n} dx_{h})^{2} - (\frac{1}{n}\sum_{i=1}^{n} dy_{h_{i}})^{2}.$$

Azokra a részecske párokra átlagoljuk az r_{hk} és a kapott r értékeket, amelyek esetén az r_{hk} egész része megegyezik. Így az adatoktól függően maximálisan 40 értékpárt kapunk. A még pontosabb eredmény érdekében az { r_{hk_t} , $\frac{r(t-1)+r(t)+r(t+1)}{3}$ } pontokat ábrázoljuk, ahol t a binek sorszámát jelöli.

3000 képkockából nyert adatcsomag feldolgozása során a 10. ábrán látható eredményt kaptuk. Ebben az esetben a képkockákon egyenként haladva (n=1) azonosítottuk azokat a részecske párokat, amelyek távolsága kevesebb mint 40 távolság egység volt.

10. ábra Az r korrelációs együttható értéke a részecskék távolságának függvényében.

A kapott eredmények azt mutatják, hogy a közeli részecskék mozgásában pozitív korreláció tapasztalható. Látható, hogy a korreláció erősége növekszik a részecskék közti távolság csökkenésével. Nulla távolság környékén a korrelációs együttható értéke 0,2 körüli. A távolság növekedésével ez az érték a nullához közelít, miszerint nagy távolságokon a korreláció elhanyagolható. A korreláció hatótávolságára kapott érték megközelítőleg 20 távolság egység a program által értelmezett skálán. Ez az érték méterben kifejezve hozzávetőlegesen a 10⁻⁵ m tartományba esik.

Vizsgáltuk a korreláció erősségének a részecskék méretétől való függését is, de mivel ebben az

esetben a részecskék méretei azonos nagyságrendűek, a mérettől való függés nem volt kimutatható.

Következtetés

Az elvégzett kísérletek alapján sikerült a Brown mozgás néhány általános törvényének az igazolása kísérleti úton.

Sikerült igazolni a Marian Smoluchowski és Albert Einstein által kidolgozott elméletet, miszerint a részecskék mozgékonysága fordítottan arányos a sugaruk gyökével.

Egy érdekes és eddig még nem tárgyalt jelenséget mutattunk be, amely szerint a folyadékban levő mikróméter nagyságú részecskék mozgásában korreláltság tapasztalható. Sikeresen kimértük ezen korreláció erősségét és hatótávolságát.

Hivatkozások

[1] Székely J. Gábor, Paradoxonok a véletlen matematikájában (Typotex, Budapest, 2010)

[2] Tomasz Greczyło, EwaDębowska, Brownian motionwithdatavideo

[3] Paul Nakroshis, MatthewAmoroso, JasonLegere, and Christian SmithDepartment of Physics, University of Southern Maine, Portland, Maine 04104-9300, Measuring Boltzmann's constantusing video microscopyof Brownian motion; R. Salmon, C. Robbins, K. Forinash, Brownian motionusing video capture, Eur. J. Phys. 23 (2002)

[4] Trackpy, URL: http://soft-matter.github.io/trackpy/stable/tutorial/walkthrough.html

[5] Néda Zoltán, Sztochasztikus szimulációs módszerek a fizikában (Erdélyi Tankönyvtanács, Kolozsvár, 1997)

[6] Karl Pearson (20 June 1895) "Notes on regression and inheritance in the case of two parents", Proceedings of the Royal Society of London, 58 : 240–242.