Erdélyi Tudományos Diákköri Konferencia
 

 
 
 
  műhely    » Erdélyi Tudományos Diákköri Konferencia
év 2006 2007 2008 2009 2010 2012 2017   
szerzők a b c d e f g h i j k l m n o p r s t u v x z ö   
címek a b c d e f g h i j k l m n o p q r s t u v z ö ü   
 

| észrevételeim vannak


| kinyomtatom

| könyvjelzőzöm










keresés

szerző:
cím:
kivonat:
szekció:







adatlap

Horobeţ Emil

» Szekció: Matematika
» Bemutatás éve: 2009
» Cím: Ferde csoport algebrák reprezentációja
» Intézmény: BBTE, MIK, matematika-informatika szak, II. év
» Minősítés: dicséret
» Témavezető: dr. Mărcuş András professzor BBTE, MIK, Algebra tanszék

» Kivonat:
Tekintsünk egy G véges csoportot, mely hat egy A gyűrűre. Ekkor szerkesszük meg az A*G gyűrűt, melyet ferde-csoport gyűrűnek nevezünk.
A dolgozatban bemutatjuk, hogy egy A algebra adott tulajdonsága átöröklődik egy a B algebrára, ha B-t A-ból a fenti szerkesztés által kaptuk. Ezen szerkesztés és az átöröklődő tulajdonságok segítségével kiderül, hogy néhány látszólag egymástól független algebrának sok közös vonása van.
A dolgozat első felében bemutatjuk a pontos szerkesztési módot. Igazoljuk, hogy néhány általános feltétel elhagyható lesz speciális esetekben.
A dolgozat második részében ismert, közhasználatú algebrákról (pl. csoport-gyűrűk, stb.) igazoljuk, hogy ferde-csoport szerkesztésből származnak.
A dolgozat utolsó részében pedig néhány átöröklődő tulajdonságot vizsgálunk meg.
A felismert közös vonások tudatában indokolt lesz az A* G algebra A algebrával való jellemzésének kérdése.

» Teljes dolgozat: [PDF]

Vissza

 
 
kapcsolódó
» mi ez?
» rövidítések
» felhívás az ETDK résztvevőihez
 
 

(c) Erdélyi Magyar Adatbank 1999-2017
Impresszum | Médiaajánlat | Adatvédelmi záradék